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Approximate expressions are obtained for mass flux and thermal conductivity com- 
ponent in a temperature gradient field in a plane slit. A number of examples are 
used to demonstrate the significant contribution of heat--mass transfer in the 
transitional regime to thermal conductivity of refractory materials. 

An analysis of the intensity of heat--mass transfer processes within the pores and 
microfissures of refractory materials upon evaporation, dissociation, and other hetero- 
geneous physicochemical processes is of practical importance since in the operation of 
thermostable materials under conditions characteristic of present day technology, i.e., 
in the range of temperatures near the melting point, in various gas media under high and low 
pressure, and at high thermal flux, such processes lead to marked change in the structure 

and properties of ceramics. 

Heat--mass transfer in pores and microfissures under the influence of a temperature 
gradient has been studied previously [i] for the case of free molecular and diffusion motion 
of gas molecules. However, the structure of the pore space of the majority of refractory 
materials is such that an intermediate regime of gas motion is usually to be found in the 
pores. Therefore, study of heat--mass transfer over a wide Knudsen number range is of prac- 
tical interest. The most systematic approach to this problem commences from the Boltzmann 
kinetic equation. However, the difficulties which arise in studying the kinetic equation 
in multicomponent systems [2] and the absence of data on the concrete parameters of gas 
molecule interaction with the solid surface and each other compel us to obtain interpolation 
formulas, considering both the limiting regimes examined previously and certain results of 
solution of the kinetic equation obtained for recondensation of a single-component gas. 
Such an approach was applied to an analysis of heat--mass transfer in ice sublimation in a 
rarefield atmosphere [3]. On the basis of gas kinetic theory, the authors attempted to 
represent the resistance to heat--mass transfer in a gap in the form of the sum of three 
resistances: two free molecular, localized at the solid surfaces at the mean free path 
length distance (A), and a diffusion component, located in the middle of the gap. Such a 
model describes experimental results [3] satisfactorily at Kn < 10 -2 . However, as can e~sily 

be shown, it will not describe the limiting transition to free molecular flow as Kn§ if 
Kn> 2, the calculation formula loses its meaning, since the diffusion resistance to transfer 

becomes negative. 

In constructing interpolation formulas applicable to analysis of the heat--mass trans- 
fer processes in ceramic microfissures forJthe case of arbitrary Kn values, we have also 
assumed that the total resistance to heat--mass transfer can be represented as the sum of 
consecutively situated resistances. However, in order that the calculation formula should 
satisfy limit relationships, it proved sufficient to assume the existence of only two (and 
not three, as in [3]) resistances: free molecular and diffusion. To find the mass flux it 
is necessary to be able to calculate each component of the total flux individually. For a 
constant concentration gradient the diffusion resistance must depend on the gas molecule 
motion regime, i.e., on the value of Kn. In fact, it follows from elementary gas kinetic 
theory [4] that the probability of scattering of molecules in a gap f is equal to 1 -- e -I/Kn. 
Therefore, the value of R D will be directly proportional to not only the thickness of the 
gap, but also to the quantity f. Although molecular collisions hindering free mass transfer 
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Fig. i. Quantity I/Ima x vs log Kn for decom- 
position of CaCO~ at T=800~ calculated by 
Eq. (2) (curves i, 2), by Stefan's formula 
(3) and from equation of [3] (4). "Passive" 
gas (nitrogen) pressure, Pa: 1.3-102 (curve 
2)~ 1.3.10 ~ (curves i, 3, 4). 

Fig~ 2. Cr03 flux, mole/m2.sec'deg K vs 
microfissure size, m, for various partial 
oxygen and total pressures, Pa: l0 s and 105 
(curves i, 4); 2.104 and 105 (2, 5)$ 104 and 
104 (3, 6); curves 1-3 are for T= 2200~ 4-6, 
for T = 1600~ 

and leading to diffusion occur with equal probability at any point in the gap, for calcula- 
tion of R D it will be convenient to introduce an effective diffusion length dl = df, where 
d is the gap thickness. We will now concentrate the diffusion component at one of the sur- 
faces, assuming the diffusion length equal to dl, and further assuming that in the remaining 
portion of the gap free molecular mass transfer occurs, with the resistance to transfer 
determined solely by the difference in pressure of the "active," i.e., transferred gas. 
Then the total resistance R=RKn+RD, and as Kn§ dl § R§ ~ while for Kn§ d1§ 
R§ i.e., this relationship satisfies the known limiting cases. In the case of a devel- 
oped hydrodynamic regime of gas recondensation at high concentrations of the "active" gas 
and low concentrations of the "passive" gas, the model is experimentally justifiable [5]. 

On the basis of such concepts, it is simple to obtain an expression for the gas mole- 
cule flux in the gap. To do this it is necessary to solve a system of equations, one 
unknown in which is the concentration (pressure) of the "active" gas at the boundary between 
the diffusion and free molecular regions PAl" For the case of a single component active gas 
and with some simplifying assumptions, we have 

l 2 
I -  )/2z~MRT (PA~ 

t 6~RT P - -  PA2 

(i) 

where M is the molecular mass of the active gas; p, total pressure in the gap; PAo and PA2, 
partial pressures of the active gas on the hot and cold surfaces; D, diffusion coefficient; 
R and T, gas constant and absolute temperature; I, mass flux (mole/m2.sec). The heat flux 
Q related to this mass flux will equal I AH, where AH is the thermal effect of the process. 

To analyze the relationships obtained, it will be convenient to consider the dimension- 
less ratio of the flux value corresponding to a fixed value of Kn to the maximum possible 
flux Imax, realizable in the free molecular regime. For a two-component gas mixture we 
obtain 
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[ [  2dlRT(p--PA2) ] -I. (2) 

/max = 1 q -  Dp]/.2aMR T 
Figure  1 shows va lues  of  I / Ima x c a l c u l a t e d  by  Eq. (2) (curves  1, 2 ) ,  by S t e f a n ' s  

formula  (curve 3) ,  and by the  equa t ion  of  [3] (curve  4) f o r  the r e a c t i o n  of CaC03 decom- 
p o s i t i o n  a t  T = 800~ I t  i s  e v i d e n t  from the  f i g u r e  t h a t  Eq. (2) pe rmi t s  c a l c u l a t i o n  of  
the mass f l u x  a t  a r b i t r a r y  Kn, whi le  the  e x p r e s s i o n  ob ta ined  p r e v i o u s l y  in  [3 ] ,  a l though  
g iv ing  a c c u r a t e  r e s u l t s  up to Kn< 0 .5 ,  l o se s  meaning a t  h ighe r  v a l u e s .  

Derivation of the expression for effective thermal conductivity of the gap in the 
transition regime from Eq. (2) is elementary: 

[ 2dlRT(p--PA2) ] -', (3) 

where the expression for maximum gap conductivity corresponding to free molecular flow 
mass transfer has the form [i] 

~max - -  ~Pa dl (AH) 2 
RTZ]/2--~-M-RT (4) 

Here a is the gas molecule reflection coefficient and All is the heat of the process. 

As an example of application of the expressions obtained in analysis of processes 
within a ceramic, Fig. 2 shows the result of calculation of the mass transfer developing 
in passage of a thermal flux through chromium oxide refractories in a medium with various 
partial oxygen pressures. Thermodynamic analysis shows that the main product of Cr203 
interaction with oxygen is the gaseous oxide CrO3: 

2Cr203s+302g~4CrO3g- 

Reaction equilibrium constants, partial CrO3 pressures at various 02 pressures, and 
the reaction thermal effect were calculated on the basis of thermodynamic data, while the 
diffusion coefficient was found from Gillilend's formula [6]. As follows from the curves 
presented in Fig. 2, the intensity of mass transfer depends to a significant degree on both 
the microfissure size, and on the partial oxygen and total gas pressure. In microfissures 
greater than i0 ~m in size, where a diffusion transfer regime is realized at the parameter 
values considered, the relationship between CrOa pressure and the quantity D has its greatest 
effect. Therefore, upon heating in a rarefied oxidizing atmosphere (curves 3, 6) the Cr03 
flux relative to the temperature head is higher than in air or in pure oxygen. At the 
same time, in finer pores the mass transfer rate in pure oxygen at atmospheric pressure 
(curves i, 4) is significantly higher than in air (curves 2, 5) and in rarefied oxygen 
(curves 3, 6). We note that at a temperature differential of 0.01~ at T=2200~ the maxi- 
mum rate of grain boundary migration comprises 61.7 ~m/h, with a thermal flux of 157 W/m 2. 

In conclusion, we note that the transition of the mass-transfer regime from diffusion 
to free molecular (see Fig. l) corresponds to numbers Kn ~10-2-101 , which for the dominant 
intergrain boundary thickness in ceramics of ~ 1 ~m corresponds to pressures of 102-104 Pa. 
It is in this range that the main change in thermal conductivity and diffusivity of ceramic 
materials does occur [7-9], and the transitional mass transfer regime has a significant 
effect on thermal conductivity of refractories. 
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EQUILIBRIUM SPEED OF SOUND IN A DISSOCIATING GAS 

/ 

E. A. Orudzhalev UDC 431.84 

An expression is obtained for the speed of sound in dissociating nitrogen tetroxide 
with consideration of the nonideality of the gas. 

Dissociating nitrogen tetroxide shows promise as a heat-exchange agent and working sub- 
stance in nuclear energy equipment. 

To derive an expression for the equilibrium speed of sound in this system (gas), we 
will use the formula 

a =  O p  (1) 

w h e r e  s i n d i c a t e s  i s e n t r o p i c  c o n d i t i o n s .  E x p r e s s i n g  a i n  t e r m s  o f  t h e  s p e c i f i c  v o l u m e ,  we 
o b t a i n  

0p 
aa = - -  ~ ( -~-v)  " (2) 

For the partial derivative in Eq. (2) we will use the formula [i] 

There is a relationship between the partial derivatives of the function of two indepen- 
dent variables: 

1 (or 
~-P]T k~-Iv k-~v )o- -- I. (4) 

Defining (~p/~T) v from this expression and substituting in Eq. (3), we obtain 

We will now use the differential equation [i] 
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